6,848 research outputs found

    New Structure In The Shapley Supercluster

    Get PDF
    We present new radial velocities for 189 galaxies in a 91 sq. deg region of the Shapley supercluster measured with the FLAIR-II spectrograph on the UK Schmidt Telescope. The data reveal two sheets of galaxies linking the major concentrations of the supercluster. The supercluster is not flattened in Declination as was suggested previously and it may be at least 30 percent larger than previously thought with a correspondingly larger contribution to the motion of the Local Group.Comment: LaTex: 2 pages, 1 figure, includes conf_iap.sty style file. To appear in proceedings of The 14th IAP Colloquium: Wide Field Surveys in Cosmology, held in Paris, 1998 May 26--30, eds. S.Colombi, Y.Mellie

    Scaling relations of the colour-detected cluster RzCS 052 at z=1.016 and of some other high redshift clusters

    Full text link
    We report on the discovery of the z=1.016 cluster RzCS 052 using a modified red sequence method, followup spectroscopy and X-ray imaging. This cluster has a velocity dispersion of 710+-150 km/s, a virial mass of 4.0e14 Msol (based on 21 spectroscopically confirmed members) and an X-ray luminosity of (0.68+- 0.47)e44 ergs/s in the [1-4] keV band. This optically selected cluster appears to be of richness class 3 and to follow the known L_X-sigma_v relation for high redshift X-ray selected clusters. Using these data, we find that the halo occupation number for this cluster is only marginally consistent with what expected assuming a self-similar evolution of cluster scaling relations, suggesting perhaps a break of them at z~1. We also rule out a strong galaxy merging activity between z=1 and today. Finally, we present a Bayesian approach to measuring cluster velocity dispersions and X-ray luminosities in the presence of a background: we critically reanalyze recent claims for X-ray underluminous clusters using these techniques and find that the clusters can be accommodated within the existing L_X -sigma_v relation.Comment: MNRAS, in pres

    Women: Prisoners of the Word

    Get PDF

    Computing coset leaders and leader codewords of binary codes

    Full text link
    In this paper we use the Gr\"obner representation of a binary linear code C\mathcal C to give efficient algorithms for computing the whole set of coset leaders, denoted by CL(C)\mathrm{CL}(\mathcal C) and the set of leader codewords, denoted by L(C)\mathrm L(\mathcal C). The first algorithm could be adapted to provide not only the Newton and the covering radius of C\mathcal C but also to determine the coset leader weight distribution. Moreover, providing the set of leader codewords we have a test-set for decoding by a gradient-like decoding algorithm. Another contribution of this article is the relation stablished between zero neighbours and leader codewords
    corecore